STEMSEL Intermediate Project 1: Intruder Voice Synthesiser (runlinc version)

Problem

How can we use microchips to protect our valuables? How can a microchip know if there is a thief and what can it do when it detects one?

Background

By learning STEMSEL, you can learn to program microchips to tell it what to do. Microchips can monitor devices and warn people like when your laptop battery is low, and you need to plug the cable in. However, they can also be used to control cameras and even stream the camera to a webpage.

Ideas

Look at the STEMSEL controller board. Can you see any inputs, i.e. something that we can touch or change to tell the microchip something? What about an output, i.e. something the microchip can change to tell us something? What kind of inputs and outputs are normally on an alarm system? What inputs and outputs can we use on our alarm system?

Plan

As we know most alarms have some kind of flashing light along with some kind of an alert noise like sound or voice, as well as some kind or method of detection. To do this we will use the lamp provided in the kit along with the light sensor for motion detection. For the voice we will use the web browsers own speech. The lamp should flash for about 1 second on and 1 second off. The light sensor will have to be set to a number that will allow for less light or sensor that aren't that sensitive.

OUTPUTS

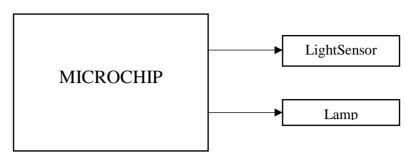


Figure 1: Block diagram of Microchip outputs

Runlinc Background

Runlinc is a web page inside a Wi-Fi chip. The programming is done inside the browsers compare to programming inside a chip. The runlinc web page inside the Wi-Fi chip will command the microchips to do sensing, control, data logging Internet of Things (IoT). It can predict and command.

Part A: Design the Circuit on runlinc

Note: refer to runlinc Wi-Fi setup guide document to connect to runlinc

In our circuit design we will be using the Lamp and a Light Sensor. We happen to have these in our kits, so these can be used on our circuit design, as per the plan.

On the runlinc webpage remember to type in the Names for the equipment we are using

For port C7, we name it LightSensor and set it as ANALOG_IN

For port C4, we name it Light and set it as DIGITAL_OUT

runlinc V1.1 Copyright and International Patent Pending. All rights res

	File		Board	
Load File		Send		
	Save	Get		
Run Code	Stop Code	Board IP:	http://192.168.1.60))
STEMSEL				\$
PORT	CONFIGURATION		NAME	STATUS
A3	DISABLED \$			
B4	DISABLED \$	\square		
B6	DISABLED \$			
C0	DISABLED \$			
C1	DISABLED \$			
C2	DISABLED \$			
C3	DISABLED \$			
C4	DIGITAL_OUT \$	Light		OFF
C5	DISABLED \$			
C6	DISABLED \$	\square		
С7	ANALOG_IN \$	LightSer	isor	107

Network Status: Active

Figure 4: I/O configurations connections

Part B: Build the Circuit

Use the runlinc I/O to connect the hardware. Remember that black wires connect to the negative port (-), red wires to the positive port (+) and white wires connect to the pin designated in the circuit design.

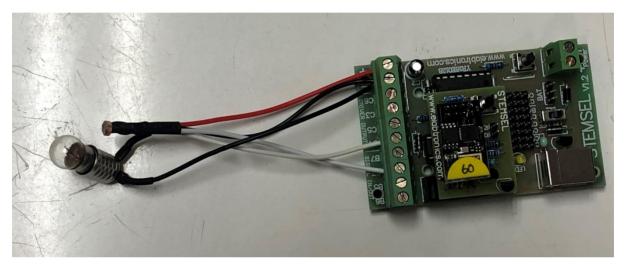


Figure 5: Circuit connection with microchip

- a.) Connect the white wire of the LightSensor to C7
- b.) Connect the white wire of the Lamp to C4
- c.) Connect all the black wires to the negative port (-)
- d.) Connect the red wire of the LightSensor to the positive port (+)

Part C: Program the Circuit

Use the blocks on the right side of the runlinc webpage to program the functions of the traffic light. Use the HTML to add contents, CSS to add style in your favour and Javascript to program the microchip. For this case only JavaScript Loop is needed program it to act as an alarm. Type the following code.

After naming ports C4and C7. We are going to Program the circuit. First, we need to declare an if statement. To do this we will type into the JavaScript Loop "if (" now go to Select Macro an choose "analogin" from the drop down menu.

JavaScript Loop	Select Macro 🗢	select a device \$	Add Macro
if (turnOn turnOff		
	analogIn digitalIn await mSec infinite loop function async function		
	if else if else while		
JavaScript Loop	turnOn 🜩	select a device \$	

And then go to the next button **select a device.** Select the LightSensor.

JavaScript Loop	\$ LightSensor	\$ Add Macro
if (Light LightSensor	

And then click the add Macro button to add the macro.

JavaScript Loop	analogIn	\$	LightSensor	\$ Add Macro	
if (analogIn(LightSensor);			
					10

Now delete the semi colon and replace it with "<160". The 160 represents the number that everything will activate if it goes lower than it. Make sure the number works for your set-up some might have to be lower or higher.

JavaScript Loop	analogIn	\$	LightSensor	\$ Add Macro	
if (analogIn(LightSensor)<1	.60		

Now that we have set-up the if statement we need to declare what it'll do if the numbers drop below 160. After the 160 add "{"

So next what we want to turn on our light. In the JavaSript Loop select the macro turnOn.

JavaScript Loop	turnOn	\$ Light	¢	Add Macro)
if (<u>analogIn</u> (analogIn digitalIn await mSec infinite loop function async function if else if	60			/
	else while				

And then go to the next button **select a device.** Select the Light.

JavaScript Loop	turnOn	\$	Light	\$ Add Macro	
if (<u>analogIn</u> (LightSensor)<1	Light LightSensor		

Then add the Macro.

JavaScript Loop	turnOn	\$	Light	\$ Add Macro
if (analogIn(turnOn(Light)<1	60	
<u> </u>				1

Then, we need to keep the Lamp on for 1 sec. Go to the **Select Macro** button, choose the **await mSec.**

JavaScript Loop	turnOn 🗢	Light	\$ Add Macro
if (analogIn(turnOn(Light		60	
	await mSec infinite loop function async function		/_
	if else if else while		

And then click the **Add Macro**.

JavaScript Loop	await mSec	\$	Light	\$ Add Macro)
if (analogIn(turnOn(Light await <u>mSec</u> (1	:);)<1	60		
l					14

We will leave the 1000ms there as this will be the 1 sec that we want. After 1 sec we want to turn off the light. From the macro button select turnoff along with the Light under the devices.

JavaScript Loop	turnOff	\$	Light	\$ Add Macro
if (analogIn(turnOn(Light await mSec(1			60	
Add the macro.				
JavaScript Loop	turnOff	\$	Light	\$ Add Macro
if (analogIn(turnOn(Light await mSec(1 turnOff(Ligh	:); .000);)<1	.60	

Now as this is a loop we will need to add another await mSec otherwise the light will never turn off. Go ahead and add another await for 1 sec.

JavaScript Loop await mSec	\$	Light	\$ Add Macro	
<pre>if (analogIn(LightSensor turnOn(Light); await mSec(1000); turnOff(Light); await mSec(1000);</pre>	;)<1	.60		•
				-
l				

Now that we have the flashing of the light setup we need to give our alarm a voice. To do this we will use speech synthesis. To do this follow the code snippet that follows:

const speech = new SpeechSynthesisUtterance("Intruder Alert");

window.speechSynthesis.speak(speech);}

This code will allow runlinc to access your browsers voice. Now that we have set up the voice we need to make sure it doesn't go off when there is high enough light. To do this type in:

else{

```
window.speechSynthesis.cancel();
```

Now add in a macro to turn off the light using the methods we used before. Make sure to close off your code with a "}"

At the end you should have the program as below.

For JavaScript Loop the code is:

if (analogIn(LightSensor)<100){
turnOn(Light);
await mSec(1000);
turnOff(Light);

await mSec(1000);

```
const speech = new
SpeechSynthesisUtterance("Intruder Alert");
```

window.speechSynthesis.speak(speech);

}else{

window.speechSynthesis.cancel();

turnOff(Light);

}

Summary

People can use programming to tell microchips what to do. However, sometimes those microchips in turn can warn people about dangers or intruders, so it is important to program them correctly. In this project, we learned that we can use lights in conjunction with a voice can be used to achieve this.

runlinc V1.1 Copyright and International Patent Pending, All rights reserved.					
File		Board		css	
Load File		Send			
Save		Get			
Run Code Stop Code		Board IP: http://192.168.1.60			
(STEMSEL +)				HTML	
PORT	CONFIGURATION	NAME	STATUS		
A3	DISABLED \$				
B4	DISABLED \$				
B6	DISABLED \$			JavaScript Select Macro	
C0	DISABLED \$			JavaScript Select Macro Select Macro Select a device Add Macro	
C1	DISABLED \$			JavaScript Loop turnOff	
C2	DISABLED \$			if (analogIn(LightSensor)<100){	
C3	DISABLED \$			<pre>turnOn(Light);</pre>	
C4	DIGITAL_OUT \$	Light	OFF	await <u>mSec(</u> 1000); turnOff(Light);	
C5	DISABLED \$			await <u>mSec</u> (1000);	
C6	DISABLED \$			<pre>const speech = new SpeechSynthesisUtterance("Intruder Alert");</pre>	
C7	ANALOG_IN \$	LightSensor	81	<pre>window.speechSynthesis.speak(speech);</pre>	
Network Status: Active				<pre>}else(window.speechSynthesis.cancel(); turnOff(Light); }</pre>	

Figure 6: runlinc webpage screenshot